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,,. ATRACT 'Surface waves at the water surface are influenced locally by a

submerged moving slender body. In addition to the Kelvin wave pattern
which would be created by the moving body when travelling at'uniform
speed under smooth water, waves on the surface can be diffracted; this
report is concerned with the diffraction effect. It is assumed that,
body is moving at constant speed, is not oscillating, and that the wave
heights are small in comparison with the body dimensions. so that a
linearized theory can be applie1. -Using slender body theory, relative
wave heights can be evaluated., For monochromatic waves, two critical,
singular points, at which the linearized theory does not hold, occur
when the component of body velocity in the incident wave direction, and
relative to the wave, is equal to the group velocity of the wave with
negative or positive sign: at the former point, disturbances c4.used by
the body, and existing ahead of the body, begin to grow to infinite
amplitude; at the latter point, monochromatic waves behind the body
1propagate at the energy velocity of the wave, and are thus also of in-
finite amplitude. "For the coincident wave-budy dtrection case, app~roxi-
mate expressions for the results are obtained for three particular
ranges of the encounter frequency and body velocity parameters. However
by considering a wave spectuium with a local spectral density, i1 stead of
a monochromatic wave, the singularities of the linear theory can\be
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removed and a mfen increase in wave height can be defined over the
entire encounter-velocity domain. The required integrals over the
wave spectrum case are discussed; the actual numerical evaluation
of these integrals has yet to be carried out.
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NOTATION

a Alteration factor for incident wave height

am  Mean wave height altc .ation parameter

A Waterplane area of body

A Longitudinal transverse area of bndy

A B Constants

b Constant in wave spectrum representation

B Beam of body

c Propagating velocity of incident gravity waves

C Contour of body transverse cross section

d Ratio c body depth to body length

e Base of natural logarithms

E, E Local and reference energy densities

f Function defining transverse cross section of body

F Unknown source strength at rurface of body

Fr Froude number with body depth as reference

g Gravitational acceleration

gn Wave contributin in Gn

G Green's function
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G1, G Portions of G

h Dimensionless wave height parameter

H Wave height

k Dimensionless incident wave number

K Function of C and

L Length of body

n, m Subscripts

* p, p Local and refe.'ence wave amplitudes

q Constant of integration

qn Poles

S, Si, T Functions of horizontal and vertical longitudinalcro:.s sections

t Time

u, v Stationary phase function constants i I
V Uniform velocity of body

AA

Stationary phase functions

U, V Numerically evaluated functions for c - 1 -v

Functions for c 4y - 1

w Function of 0

x Ratio of distance in axial direction from origin
(midship) to body length
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T, Y Correction factors for U and V

y Constant of integration

9, , C Coordinate system fixed to body

O Angle of incident wave direction with negative axis

0 Dimensionless horizontal cross section ordinate

y Dimensionless wave encounter parameter

6 Dimensionless body velocity parameter

e Small parameter

o Constant of integration around body

XWave 1-ngth

a Frequency of wave encounter

Dimensionless ordinate of lateral vertical cross section

Disturbance of w due to presence of body

Dimensionless potential of incident wave

to Steady portion of dimensionless potential due toforward motion of body

CP1 Wave portion of dimensionless potential @

Total dimensionless potential

# Velocity potential

Wave frequency in fixed co-ordinates

I
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a el ABSTRACT

-.Surface waves at the-water surface are infiaenced locally by
a submerged moving sler-der body. In addition to the Kelvin

wave pattern which would be created by the moving body when

travelling at uniform speed under smooth water, waves on the

surface can be diffracted; this report is concerned with the

diffraction effect. It is assumed that the body is moving at

constant speed, is not oscillating, and that the wave heights

are small in comparison with the body dimensions, so that a

linearized theory can be applied. Using slender body theory,

relative wave heights can be evaluated. For monochromatic

waves, two critical, singular points, at which the linearized

theory does not hold _occur when the component of body Velocity

in the .ncident wave direction, and relative to the wave, is

equal to the group velocity of'the wave with negative or pooi-

tive signi at the former point, disturbances caused by the

body, and existing ahead of the body, begin to grow to infinite

amplitude; at the latter point, monochromatic waves behind the

body propagate at the energy velocity of thle wave, and are thus

also of infinite amplitude. For the coincident wave-body direc-

tion case, approximate expressions for the results are obtained

for three particular ranges of the encounter frequency and body

velocity parameters. However, by considering a wave spectrum

with a local spectral density, instead of a monochromatic wave,

the singularitiea of the linear theory can be removed and a mean
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increase in wave height can be defined over the entire encounter-

velocity domain. The required integrals over the wave spectrum

case are discussed; the actual numerical evaluation of these

integrals has .et to Le carried out.

FORMULATION OF THE PROBLEM

When a body moves beneath surface gravity waves, the

question arises: to what extent is the propagating wave pattern

affected by the presence of the body? In addition to the sta-

tionary wave pattern created by the moving body when travelling

under smooth water, incident waves are disturbed by diffraction;

this phenomenon is the subject of the present study. It is

assumed that the body is slender and in uniform forward motion;

the initial discussion deals with monochromatic surface waves

travelling in a fixed direction.

The coordinate syste-n is given in Figure 1; L/2 is the unit

of length, L being the length of the body. The coordinate system

(9, , C) is fixed in the body and moves at speed V in the posi-

tive C direction. The contour C(C) of the transverse vertical

cross section is described by the function n = f(9, C). The

wave heights are assumed to be small compared to the body dimen-

sions even when the body is near the free surface; consequently,

a linearized theory can be applied.

Since the fluid can be assumed to be incompressible,

inviscid and irrotational, the problem can be described by a

velocity potential t, or, in a dimensionless notation
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CPT a 0/gL [1J

where
S'T =  + cpw e -iat + e-iot [21

with a the frequency of wave encounter, po the steady part of

the potential due to the forward motion of the body, ew the

potential of the incident wave, and e characterizing the dis-

turbance of ew due to the presence of the body. o , w' and e

are all time independent, and the encounter parameter y is

given by

= av/g [3J

The nondimensional wave potential ew is given by

= hek(C-2d) + ik(C cos a + n sin a) [4]

with a the angle of the incident wave direction with the negative

axis, d the body depth divided by L, and h the wave height

parameter given by

h = aH/WL [5]

with H the wave height, and w the wave frequency in a co-

ordinate system fixed in space. The non-dimensional wave

number k is given by
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k W*L/2g = [61

with X the wave length. The relationship between a and w is

given by

0 = W- Va CosL/g[7

By defining

6 = wV/g = Fr(2kd)l12 = V/c [8]

with the Froude number based on depth

Fr = V/(gLd) 1/2 r9]

the wave encounter parameter y can be related to the velocity

parameter 6 by

y = 8 - 68 cos a Lio]

The wave encounter problem is discussed in Reference 1

with particular regard for the interpretations to be given to

encounter and velocity parameters so that a wave potential of

the form given by Equation [4] can be assumed to hold throughout

the a - a plane. These results can be summarized as: the

velocity V is always aO; for 6 cos a < 1, the encounter fre-

quency is equal to a by Equation [7], and the encounter angle

is a; for 6 cos a > 1, the encounter frequency is equal to -a,
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the encounter angle is a + r, and the wave encounter parameter

given by Equation [103 changes sign so as to remain k 0. These

interpretations will be discussed later when the particular

case of coincident encounter (a = 0, r) is considered.

There are several solutlins to the problem of wave dif-

fraction over a submerged cylinder, with the waves travelling

normally (Reference 2) and obliquely (Reference 3) to an

infinite cylinder. The solution given in the present report

employs slender body theory and assumes that the (finite) body

has a fine shape at the bow and stern; it is thus particularly

well suited to the case of co-incident wave-body direction, but

not as applicable to the normal encounter case.

A theoretical treatment of the slender body diffraction

problem is given in Reference 4, but assumptions restricting

the encounter angle to 0 and 7r, and the body velocity to very

small values, limit its applic-bility.

A detailed statistical evaluation of surface wave diffrac-

tion is outlined in Reference 5, but the required scattering

function to which the m.thod would be applied is not discussed

in any detail. The approach taken in the present report is

aimed at, first, obtaining the scattering behavior, and then

treating the statistics of waves in a simplified manner.
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THE GENERAL SOLUTION

Following the approach of the hydrodynamic theory of ship

motion, (References 6, 7) the function c may be written as

( D= Jd9 jd dC F(Cs) a(1 + (fo) 2 + (f, [)

where (f,'IO,) is the point in the (9,n,C) co-ordinate system

where the wave potential is to be determined, F(CC) is the

unknown source strength at the body surface, and G(f, ,T; , ,)

is the Green's function which satisfied the Laplace equation,

the free surface condition, and the radiation condition. The

function F is determined from the boundary condition at the

body

The function G is discussed in References 6 and 7.

Approximate expressions for c will be derived in the

following paragraphs for the case of a slender body.

The Slender Body Approximation

In slender body theory, the transverse dimensions of the

body are assumed to be .mall with respect to the length of the

body. Using this assumption, G behaves at the body surface as
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C + ( -) + + [13)

where K is a function only of and . Using Equations [f) and

[11), the boundary condition of Equation [12) becomes

-4rF(?,T) -2 ' dCF(C,C) in (( -f)2 + (T-C)2) (1+ (f, )) =

- ;' -2kd+ik-9 cos a )
= -kh(i sin a sgn(1) + (f,.)sgn ( ))e /(+(co

Integration along the cross section contour with respect to?

gives the functions

)= d"F( , (1 + (f,(1))

-_2kd + ikJ cos a

hk + ir( ) sin ] e /2r 151

sjT)= iks(i) cos a + T(T) [16)

T - hk [A'i + rsin a] e -d+ kcsa/2i* £17)

where ( ) is the dimensionless horizontal cross-section offset,
and T(i) the dimensionless lateral vertical cross-section offset.
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The wave height is determined from the behavior of the

potential c at the free surfacB. At = 2d the function G

(see Reference 7) behaves as

G 2/(( -)3 + + 4d )1 + G. + G2,1 [18)

with 01 e -2qd+iq(-) cos 8Co s (-r sin )f dfd An (q,e)e cs(:

n (69q 2 coss e/k) + 2yq cos B + (vy'k/l)-q

-/2 -2qd+iq(t?-) Cos e

4 defdq An (q,e)e cos (rn sin )+
01 M1  (62qa cos e/k) + 2'yq cos e + (-,=k/62)-q

/2 B(q,)-2qd+q (-9) cos c (; sin 9)

+ d ef dq £19)

M (Bsq cos elk) - 2tq cos e + k/52)-q

where

A, . B1  yak/63

As - -i((5"q cos elk) +2 Y)

B,. 1((Bq cos O/k) -2'y) [20)

and

91 - cos- ' (1/4-y) [21
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The Integration contours N and Ns in the q plane are given

by

q3.. q& q4

Thq poles qj, qq, qs, and q4 of the integrands are

q19. - k(1-2,y cos 0 (1-4, cos S)i)/259 cos 0

q3#4 - k(l+2y coo 9 + (1 4 os 0)1)/25" coos B (22)

Assuming 8(1) - $( - O, the potential op at the free

surface can be written as

q(Loja2d) fdt 2S(C)/((Tq)s + 1?+ 4si
-l

4 4

The Wave System

Sinoce only the wave pattern is of Interes.t here, the wave

portion# . of the potential . ill be considered. The wave

oontribution of 0n# denoted by g # emunates from the residue

of the four poles. Using Nquations (15], (16]s (1-1 A 30

and Integrating b,7 parts. become ;

F_
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11

~(~~2d) f d S(g)(g 1 +ik 92 Cos a) +fd9 T(g) g2 [24]~

-1 -1

where gn is defined, for g-? < 0, in front of the body,

r /2 -qj(e)(2d-i( -C) Cos 0)
gn = 41f de An(qt(e),S)e x

B:

x cos ( = (a) sin 9)/(1-4 ,y cos G)i [25)

and for > > 0, behind the body,

r/2 -q3(9)(2d+i(C=-Y) Cos 0)
,.

n 41f d9 An(qu(G),O)e cos (;q,(e) sin e)/(1-4y cos 9)1 +
01

r/2 -q3 (8)(2d-i(9-?) cos e)

+ 41 dO Bn(q3 (8),e)e cos ((9) sin 9)/(1+4,y cos 8) -

0

r/2 -q.(6)(2d-i(g-?) Cos A)

- Bn3 B,(q.(O).O)e coo ( j.(0) sin e)/(l+4-Y cos e) (26)

0

Pr'm this it can be concluded that one wave is progressing in

front of the body and the other three are behind the body.

11

; =*
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The existence of this wave pattern can easily be illustrated

by considering the two-dimensional problem of a line source at

the surface of the water (see References 7 and 8). It can also

be understood by a rather simple consideration: In a coordinate

system fixed in space, gravity waves must satisfy the dispersion

relationship, Equation [6],

W2 = 2gk/L or c2 = gL/2k [27)

In a coordinate system moving at speed V in the direction (plus

or minus) of the waves the frequency is given by

a = 2k(c t V)/L - 2gk/L t 2kV/L [28)

This relation shows that four waves exist, which have the same

frequency a, but different wavelengths.

Range of Parameters

As an "lustration of the solution regimes, and the domains

of the encounter and frequency parameters, the case of body and

wave In the same direction will be considered. This implies an

a value of 0 or V.

There are then three domainr of interest covering the cases

of te body heading into the waves, the waves overtaking the

body, and the body overtaking the waves. In the first domain,

the angle a is r, the body is heading into the waves, 6 cos a

Is always less than 0, and
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+ 8( a-9 [29

The second domain occurs where, with a 0 0, 0 S 5 9 1, and

y - -' 5, o [30)
In the third domain, with a - 0 and 5 1, the body is ov--

taking the waves, and redefinition of encounter parameters

implies

y-- + 3,e7 [31)

In the first domain, y increases steadily from 0 as 5

increases from 0; the point -y - 1/4, which will become signif-

icant in subsequent paragraphs, occurs at B of ((2)i - 1)/2.

In the second domain, oy increases from 0 to a peak value of

1/4 at 5 - 1/2; then decreases back to zero; It Is symmetric

about 6 - 1/2. The third regime has y increasing with (B-1)

in the same way as In region one.

APPROXIMATE SOLUTIONS

In order to obtain a qualitative solution for the wave form,

approximate evaluations of the integrals of Equations [25] and

[26] can be carried out where the poi4nt of interest is far from

the body (In > 1).

8tationary Phase

The method of stationary phase may be applied to the

integrals in quations (25) and (26], as long as all functions

except the exponential behave smoothly near the stationary point..

Using the series representations of Reference 9, the stationary

point at B - 0 yields the results, for -y /, 1/4# O,

~-~a--~h- -
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- 0 [32I

and fo -r0

(q 3 , 0, B ,l+3r/4)+ (q 4 ,OB ,-, -r/4) [33) I
where__________F}? : :'where qm ( 8) (2d+iu (C-_F))+iv

ui4(r) B n(q (e),)e

The polr-s q are given by Equzation [22]. For y > l/4, q, and

q. h-ve imaginary parts and thus produce an exponential decay

which results in their omlssion.

The next term in the g solution series at the e = 0

stationary point is of order : At the 8 = 7r/2 point,

however, a term of order e~j" exists; Equation [33) then has

an additionel. term

14B n ( q (Tr/2),lr/2) e - q (/2dCoS (r q (r1/2))/q3 (lr/2) If' (3 5]

before terms of L-/' appear. This result is of interest

because it shows that the wave diffraction phenomenon is pre-

dominant along the axis of the body ( = 0), with off-axis

disturbances decaying as -  In all subseaent results,

however, only the leading terms of order 1I'1/ will be

carric i.
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The wave diffraction potential cp can now be written, for

'y > 1/4 and T > 0, as

C,= 0 [36]

while for < 0,

cp =N (q(0), -1,-3r/4) + (q(0), -l,+r/4) [37]

with

A khe -2d(k+q m(0)) + iu~q m(0) + iv
V~qm m0'')

~(q(),uv) =khe (ri 1/2q M(0)) (1-4ivy) '

1 ~ i(k cos a-uq M(O))C
Xf dt(p+ir sin a)e [38)

For the case where ey < 1/4, the poles q, and q2 contribute,

leading to, for C- < 0,

gn O(q",0,A n + 1l,-7r/4) f391

*and for 9- %' 0,

gn= O(q3,0,A n +l1,+ir/4) + q(q 3 ,0,B n)-l,+3r/4) +

*+ O(q4 ,0O,B n -1.0-r/4) [40)
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The wave diffraction potential now becomes, for y < 1/4 and

[]> 0,

= O(q, (0), +1, +r/4) [41]

and for 9 < 0,

AA
cp V(q9 (0),+l+3v/) + O(q4(0),-1-3r/4) + v(q3 (0),.-1,+r/4) [42]

The cross- ectional area integral in Equation [38] for

can be clarified by the relationships

1 1

f d9 A(C) 41if/L2  f dC Tr() 4 [4f31
!.-l -I

where A is the longitudinal-horizontal cross-sectional area of

the body, and A the longitudinal-vertical cross-sectional area.

Several qualitative results can be distilled from the

general results obtained so far. For ( ample, in the specific

case where d is large enough so that e-2q3d >> e- 2q d , the body

is moving directly into the waves, with a = r, and 1-4,y is not

small, the term (q3 l,-l, +r/4) dominates the wave potential for

<C 0 and values of y > 1/4. By comparing the wave potential

c, at a specific point = -2x behind the body, the result

cp. (-2x,2d) ae + Ti/ f (-2x,2d) [44]
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is obtained, in which a can be regarded as an incident wave

height alteration factor, given by

a = 4kl / d Ae/L2(r2x'(l+4 ,y)) [45]

This expression provides a qualitative picture of the

interference effect for this particular case; the diffraction

effect is proportional to the inverse squee root of the dis-

tance behind the body, is exponential with the depth ratio d,

proportional to the waterplane area and the 3/2 power of the

dimensionless wave number, and proportional to the inverse 1/4

power of the wave encounter parameter.

The values of the poles for the coincident wave problem

are shown in Figure 2, and these may be used to assess the

relative values of the contributions of the poles to the total

solution. For the previous example, the value of qa/k is 1

for the entire range where the body heads into the waves; q/k

is always greater except when encounter y becomes large, where

its contribution approaches that of the q3 pole. For the over-

taking range, the q pole is also smaller and so .it contributes

th 6 major portion of the result excent -.,- y becomes large.

An expression similar to Equation [45) t.sld be obtained for

this case by placing

q*(O)/k- (1+2,y(1+4-()i)/2 a (-8)/5)' [6)

into
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O (q3,-I,.+ r-/4) [47]

and comparing the result with Equation [4] with a = r and
= 2d.

The entire range of values of y has now been covered, with

the exception of the region where y approaches 1/4; at these

points, the contributions from q2 and q2 become infinite, but

in different ways at different places. When y > 1/4 but ap-

proaching, the q, and q2 contributions, previously eliminated,

must be considered to obtain the way in which these contribu-

tions become singular. For y < /4 but approaching, the q,

and q2 contributions become singular in quite another way.

These two cases are considered next.

=4-( -1

The q, and q2 integrals require special consideration as

the stationary phase point approaches the integration interval.

With the small parameter c defined by

c = 4,-1 (48

The integrals depending on q, and q. may be written

r/2
9n =f de w(9)ei q(e)l(l-4gy cos e)i

e

82 r/2 a
-f +j -f+ O- (49

: d!
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where 01 is defined by Equation [21]. For small e,

B1 (2c) [501

and Equation [49] may be reduced to

(83-e 1d i(8 2+81 )

gn = (w(el)/(y sin 8)f)I d8 e [513
0

where a change of variable has been employed. Evaluation of

the integral results in

g = ± i6 w(8j)e iqj'V(01)/(4ky' tsin e,) [52]

which gives the way in which the g functions are singular as

c-0.

The results for the gn functions are, then, for - < 0

gn = U(q1,ojA n'+l,+r/2) [533

where

V(q m(e),eAnuv) -- U X [541

with

cos (4m(9) sin 8)62/4ky8(rj~¢/q ) [55)

and for 94 > o
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g = B (q,8 1 ,A ,+1,-r/2) +

+ 0 (q 3 ),O,B, -,+3/4)+ (q 4 ,0,B, -l,-r/4) [56]

The wave potential function is defined

V(q m(e,u,v) =(qm(O) uv) [57)

which is accurate for small 81. The wave potentials then

become, for 7 < 0,

r= V(q (e01),+I,r) [58)

and for > 0,r= V(q.(e 1),+l,O) + (q.(o),-1,-3r/4) + (%(o),-l,+r/4) [59)

€= 1-=1-

The q, and q2 contributions are also singular in the four

regions where y < 1/4 but approaching 1/4. These four particular

points occur at

6 ((2- )- 1)/2 [60]

for the body heading into the waves, and at

6= (1))/2

and

S-((2- c) + 1)/2 [61]
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for the body overtaking the waves

The evaluation of Equation [2k] was carried out numerically

for small values of e to determine the behavior of the gn

functions. The results are, for 9-9 < 0,

gn = f(qO0,A n+l0) [623

where

,(qm(e),e,AnUv) = X [63)

with

X (4qm(e)= 1/70 In (e13r/2"/qm(9) lfI(wC)i) [643

and for 9-f > 0,

9 gn U(q, OA n'+10O) +

n nn

In a similar fashion, with the wave potential function defined

as

V(q (O),u-v) 166)

the wave potential bacomes, for < 0,
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(0(q (0),+l,+ r/2) [67]

and for > 0,

V (q 2(O),+l,+/2) + '(q,(0),-,.3'/4) + (q3(0),-i,+r/4) [68]

The representation of the diffraction-altered wave field is

now complete. The ordinary type of stationary phase representa-

tions hold throughout the range of y except there y so 1/4, at

which points either the corrections of Equations [54] and [57],

or of Equations [63) and [66), must be applied.

WAVE SPECTRUM RESPONSE

The results of the previous sections can be used, together

with an appropriate wave-number spectrum, to define a mean wave

alteration parameter, am, in the presence of a spectrum of waves.

An an example of how this would be carried out, the incident

wave height reduction factor of Equation [45) for the head-on-

encounter case will je used. By defining the parameter

y 2kd' [69]

Equation [45) may be rewritten

a - y 31 2 e- 2y/d7, (rxd(1+2 Fr y )/2) (0)
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The ratio of the difference of wave amplitude p and

reference wave amplitude p to the reference amplitude p

is then

p - Poo/PIM = a f7 1]

The ratio of energy densities is given by

E/EC = (p/p )a 72]

The alteration In local spectral density, or mean wave height

alteration parameter am, is then

00

am = 2 Jdk (E-E C)OL
0

•2 dk E (as + 2a)/ (73)
0

E may be approximated by (see Reference 10)

E , bL/16ks k > k

-o k<k 0741

where the value of b is taken as .008. The final expression for

a then becomes'Ui
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00- -4y/ y1/2)

a = b dy1+2 Fry )/rxdLa

2k d
0

/2J 3/2 1/2 1/2+ A b (2d/rx) f y y- e-Y /(1+2 Fr y ) [753

2k d
0

Evaluation of this expression can be carried out numerically for

specific values of x, d, A, k , and L.

The general problem which would, for example, consider the

case of following waves, is rather more difficult; a multiple

term expression for a, or, where y is close to 1/4, an expres-

sion with logarithmic components, is required. Since the final

expression for a must itself be evaluated numerically, a general
m

numerical procedure where the appropriate forms of the potential

t are used in the different regimes would seem to offer the best

solution to this complex problem. Because of the behavior of

the wave potentials near the y = I/4 singular points, and be-

cause of the logarithmic and square root nature of the singular-

Ities, integration over them to obtain the result for a wave

spectrum can, In principle, be carried out; actual numerical

evaluations are yet to be done.

CONCLUM ONS

The coincident wave-body problem chosen to illustrate the

diffraction effect is seen to possess a multiplicity of problems

precluding a simple qualitiative result. The case with the body
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heading into the waves, with y > 1/4 does, however, allow an

approximate result whch illustrates the way in which a mean

wave height al.z.eration can be defined.

Equations [44] and [45] summarize these approximate

results. Using Equation [25] for the head-on encounter case,

Equiation [45) can be rewritten

e8dk /(1+26) = a'rx/16 (A/L3 )2 k3  [76]

This relationship ts shown graphically in Figure 3, where values

of the modified alteration factor, the right side of Equation

[76], are plotted against the quantity dk for values of the

body velocity parameter 6 from 0 to 2.5. As noted previously,

as 6 becomes large, the contribution from the q4 pole becomes

significant for this case, as shown in Figure 2. Uare must also

be taken, when applying these results, to recall the phase shift

given by Equation [1'] when computing the wave diffraction

effect, and that the alteration factor a in the same

equatior- multiplIes incident wave potential.
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